Sin embargo, la aplicación de algunos métodos estadísticos permite objetivar en gran medida la estimación de errores aleatorios. La estadística permite obtener los parámetros de una población (en este caso el conjunto de todas las medidas que es posible tomar de una magnitud), a partir de una muestra (el número limitado de medidas que podemos tomar).
16.1 Mejor valor de un conjunto de medidas
Supongamos que medimos una magnitud un número n de veces. Debido a la existencia de errores aleatorios, las n medidas X1, X2,…., Xn serán en general diferentes.
El método más razonable para determinar el mejor valor de estas medidas es tomar el valor medio. En efecto, si los errores son debidos al azar, tan probable es que ocurran por defecto como por exceso, y al hacer la media se compensarán, por lo menos parcialmente. El valor medio se define por:
Una cantidad finita de números, es igual a la suma de todos ellos dividida entre el número de sumandos. Es uno de los principales estadísticos muéstrales. Expresada de forma más intuitiva, podemos decir que la media (aritmética) es la cantidad total de la variable distribuida a partes iguales entre cada observación, esto también es llamado promedio

Evidentemente, el error de la medida debe estar relacionado con la dispersión de los valores; es decir, si todos los valores obtenidos en la medición son muy parecidos, es lógico pensar que el error es pequeño, mientras que si son muy diferentes, el error debe ser mayor.
Adoptando un criterio pesimista, podría decirse que el error es la semi diferencia entre el valor máximo y el mínimo. Como los datos difieren tanto por defecto como por exceso del valor medio, tal desviación se aproximaría a cero. Para evitarlo suele tomarse, no el valor medio de las desviaciones, sino el valor medio de las desviaciones al cuadrado. De esta forma todos los sumandos son positivos. Para que la unidad de este número sea homogénea con la de los datos, se extrae la raíz cuadrada. El valor resultante se llama desviación típica o desviación estándar del conjunto de datos.
![]()
16.3 Significado de la desviación estándar. La distribución normal
Los valores de la desviación estándar que hemos calculado son realmente estimadores de este parámetro. El conjunto de las medidas de una magnitud, siempre que exista un error accidental, pueden caracterizarse por medio de una distribución estadística. Cuando el error es debido a un gran número de pequeñas causas independientes, la distribución se aproxima a la llamada distribución normal.
La forma de representar en estadística una distribución es representando en abscisas el conjunto de valores que pueden obtenerse en una medida y en ordenadas la probabilidad de obtenerlos. En el caso de que la magnitud medida varíe de forma continua, en ordenadas se representa la probabilidad por unidad de intervalo de la magnitud medida.
La función de densidad de la distribución normal tiene el aspecto reflejado en la figura. Recibe también el nombre de campana de Gauss debido a su forma. Está caracterizada por dos parámetros: media y desviación estándar. La media es el valor que con mayor probabilidad aparecerá en una medida. La desviación estándar refleja lo abierta o cerrada que es la campana de Gauss correspondiente. Una distribución muy cerrada se corresponde con una serie de medidas muy poco dispersas, y por tanto con poco error. Por el contrario si la distribución es abierta, la desviación estándar es grande. Porque La desviación estándar de un conjunto de datos es una medida de cuánto se desvían los datos de su media.
En ocasiones la repetición de la medida de una magnitud conduce siempre al mismo valor, cuando se produce estos eventos decimos que estamos en presencia de una medida sin dispersión. Si la medida se realiza con cierta atención, todas las medidas del objeto proporcionan el mismo valor. Es evidente que en este caso la teoría de desviación estándar no aplica, porque al ser nula la dispersión, la desviación estándar resulta igual a cero. En estos casos, la fuente de error no está en la superposición de muchas causas aleatorias, sino en la sensibilidad del aparato de medida.
Cuando se habla de lectura de un instrumento de medida indicador, se quiere significar la referencia de la posición relativa del índice y de la graduación, en estas apreciaciones se comete un error de lectura debido a las siguientes causas:
* Error de paralaje: este tipo de error resulta cuando la visual del operador no se encuentra perpendicular a la aguja del instrumento, sino más bien se encuentra ubicado en un cierto ángulo del mismo.
*Error debido al límite del poder separador del ojo humano : Se sabe que en condiciones normales de visibilidad la distancia angular mínima necesaria para observar dos puntos A y B separados según la figura, es de 2 minutos. En general, las escalas son, leídas desde una distancia media de aproximadamente 250 mm y esto muchas veces conlleva a errores de lectura por mucha distancia entre el instrumento y el observador.
*Error de estimación: se comete al leer valor de la desviación encontrándose la aguja entre dos divisiones sucesivas de la escala; en este caso existe cierta incertidumbre en la apreciación de la posición exacta de la aguja sobre la escala, incertidumbre que no se hace leer indistintamente mayor o menor que el verdadero y en una cantidad representada por la menor fracción que puede apreciarse de la división considerada sobre la escala.
Figura: Representación gráfica de la superficie de un cuadrado en función de su lado. La relación entre el error del lado (ex) y el error de la superficie (ey) viene dado por la pendiente de la curva, es decir, por la derivada
En una medida de precisión normal, el error es lo suficientemente pequeño como para poder sustituir la curva por la recta tangente a la curva. La relación entre el error de y y el error de x será entonces la pendiente de la curva en el punto de interés. Es decir, la relación entre el error del lado y el error de la superficie es la derivada de la función:
![]()
Es importante tener presente que esta expresión es válida sólo en los siguientes supuestos:
El error de cada variable es mucho menor que la propia variable.
Las variables son independientes en el sentido estadístico del término. Quiere esto decir que el valor de una de ellas no afecta en absoluto al valor de la otra. Por ejemplo, la estatura de una persona y su peso no son variables independientes. Si medimos el peso y la estatura de un gran número de personas llegaremos a la conclusión de que generalmente las personas más altas pesan también más.
Es una técnica de optimización matemática que, dada una serie de mediciones, intenta encontrar una función que se aproxime a los datos (un "mejor ajuste"). Intenta minimizar la suma de cuadrados de las diferencias ordenadas (llamadas residuos) entre los puntos generados por la función y los correspondientes en los datos. Específicamente, se llama mínimos cuadrados promedio (LMS) cuando el número de datos medidos es 1 y se usa el método de descenso por gradiente para minimizar el residuo cuadrado. Se sabe que LMS minimiza el residuo cuadrado esperado, con el mínimo de operaciones (por iteración). Pero requiere un gran número de iteraciones para converger.
Un requisito implícito para que funcione el método de mínimos cuadrados es que los errores de cada medida estén distribuidos de forma aleatoria.
Hasta ahora nos hemos ocupado de la manera de obtener el mejor valor de una magnitud a partir de una o varias medidas. Un problema más general es determinar la relación funcional entre dos magnitudes x e y como resultado de experimentos.
Supongamos que por razones teóricas bien fundadas sabemos que entre x e y existe la relación lineal
y=ax+b
y deseamos determinar los parámetros a y b a partir de n medidas de x e y. a es la pendiente de la recta, es decir, la tangente del ángulo que forma con el eje de abscisas, y b la ordenada en el origen, es decir la altura a la que corta la recta al eje de ordenadas. Para concretar, después de tener los valores que han resultado de un experimento se representan de los pares de valores xi, yi correspondientes al experimento.
A la vista del gráfico parece claro que las dos variables siguen una relación lineal. La recta que parece representar mejor la relación se ha dibujado ``a ojo''. Es importante darse cuenta de que los seis puntos dibujados no pasan todos por la misma recta. Esto es debido a los errores de las medidas, por lo que los puntos se distribuyen de forma más o menos aleatoria en torno a esa recta. A pesar de ello es claramente visible la tendencia lineal de los puntos.
Para medir la discrepancia entre la recta y los puntos, se emplea la suma de los cuadrados de las diferencias, con los que nos aseguramos de que todos los términos son positivos. Esta suma tiene la forma:

No hay comentarios:
Publicar un comentario